## Manual for measuring the parallax of asteroids

Paul Breitenstein (AiM) and Michael Weiermann (Nepomucenum Coesfeld)

## 1. Contents

(2) Introduction ..... 2
(3) Methods
a. Visualisation and explanation (from grade 6) ..... 3
b. Rough estimate (from grade 9) ..... 4
c. Simple trigonometric considerations: Sine or tangent, isosceles triangle ..... 5
d. Science propaedeutic work (college level) © in progress ..... 6
(4) Suitable candidates ..... 7
(5) LCO observation requests ..... 8
(6) Image processing and evaluation with AstrolmageJ (before college level) ..... 10
a. Load image sequences ..... 10
b. Launch AstrolmageJ ..... 10
c. Settings ..... 10
d. Load image files ..... 11
e. Brightness and contrast ..... 11
f. Selecting reference stars ..... 12
g. Alignment of the images ..... 12
h. Create image stack ..... 13
i. Parallax image ..... 14
j. Evaluation of the parallax image ..... 15
k. Optimisation ..... 15
(7) Image processing and evaluation (college level) in progress ..... 16
(8) Appendix
a. Table: Measured asteroids with a distance of 0.01 to 3.71 AU in 2021 ..... 17
b. Linear distance between LCO telescopes (table) ..... 17
c. Calculating the distance between two places on earth ..... 17
d. Table: Parallax $\Leftrightarrow$ Distance ..... 18
e. Some help for AstrolmageJ ..... 19

## Manual for measuring the parallax of asteroids

## 2. Introduction

Las Cumbres Observatory (LCO) operates 25 research telescopes at seven different locations worldwide, including the two Faulkes telescopes on Haleakala/Hawaii and in Siding Spring/Australia, each with a mirror of 2.0 metres in diameter, and thirteen 1.0 m telescopes. In addition, there are ten 0.4 m telescopes at the locations Siding Spring/Australia, Sutherland/SA, McDonald/Texas, Cerro Tololo/Chile, Haleakala/Hawaii and Teide/Tenerife. All telescopes can be used free of charge for educational purposes.

Using this technical equipment, it is tempting to try to determine the distance of near-Earth objects with simultaneous observations from different observation sites on Earth. With baselines of up to 10,000 kilometres, one should obtain a sufficiently large parallax.

Vividly speaking, our interpupillary distance is increased to up to 10,000 kilometres, and what we observe is digitally fixed so that it can be discussed calmly and objectively in a group or team.

Of course, it is also possible to combine your own telescopes with the LCO telescopes, as Ronald Schünecke demonstrated with the school observatory of the Gymnasium Lippstadt.

The basic idea relates to stereographic vision with the help of two eyes or cameras and the calculation methods of trigonometry. Depending on age and level of education, it is possible to delve deeper into the subject.
The first phenomenological approaches, such as stereo vision, creating one's own stereo images and a stereo view of sky objects should already have a mind-expanding effect for pupils from grade 6: Asteroids are near, while fixed stars are far away.
Rough estimates of the exact distance of asteroids can be made using simple mathematics (methods from trigonometry) to produce amazingly accurate results from as early as grade 9. With stochastics and vector algebra available at college level, results can be achieved that also meet scientific requirements.
This manual assumes that you have received basic instruction in working with the LCO telescopes and that you already may have successfully created observation assignments.

There is a large number of image editing programmes available to astronomers. Here the programme AstrolmageJ was chosen as an example.

AstrolmageJ is a free but powerful image editing programme that runs with all common operating systems. Therefore, it is also well suited for schools. AstrolmageJ can also process the compressed fits.fz files from the LCO archive directly. Both amateurs and professionals use the programme for simple but also complex solutions.

## Manual for measuring the parallax of asteroids

## 3. Methods

## a. Visualisation and explanation (from grade 6)

Stereographic vision, 3D glasses and films as well as a basic idea of cyberspace are definitely topics for lower secondary school. These can be supplemented with a stereo view into space.

For example, if you superimpose the images of asteroid (2004) Lexell from 02.12.2021 with the 0.4 m telescopes from McDonald/Texas and Cerro Tololo/Chile like transparencies, you can clearly see the "Daumensprung" (this is the german word describing the phenomenon that a thumb of the outstretched hand, alternately aimed at with the right and left eye, appears to move in front of the more distant background). If you do this with different asteroids (division of work betwenn small groups of students), you qualitatively convey the different parallaxes or distances of asteroids in addition to image processing.


Fig. 1: $\quad$ Asteroid (2004) Lexell on 02.12.2021 at 01:01UT as seen from McDonald/Texas (brown) and from Cerro Tololo (red). The individual images from the 0.4 m LCO telescopes were superimposed like transparencies using the AstrolmageJ software.

## Astronomical insight:

The stereo view into space shows: Unlike fixed stars, asteroids are moving objects that can come quite close to Earth. They belong to our solar system. The greater the distance, the smaller the parallax.

## Notes:

Using the table "Parallax $\rightarrow$ Distance" in the appendix, lower secondary school students can also estimate the approximate distance without the need of calculation.

## Manual for measuring the parallax of asteroids

b. Rough estimation of distance (from grade 9)

Parallax angle
If you enlarge the area around asteroid (2004) Lexell in Figure 1 very much, you can see and count the individual pixels.


Fig.2: $\quad$ Very high magnification of Fig. 1 in the area of (2004) Lexell
The centres are 12 pixels away in the $x$-direction and 5 pixels away in the $y$-direction.
According to Pythagoras' theorem, this makes a distance of $s=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13.0$ pixels.
In the LCO library you will find that for the 0.4 m telescopes 1 pixel corresponds to $0.571^{\prime \prime}$ (pixel scale: 0.571"/pix): https://lco.global/observatory/instruments/ .

The parallax angle is therefore $=13.0 \mathrm{pix} * 0.571^{\prime \prime} / \mathrm{pix}=7.423^{\prime \prime}=0.1237^{\prime}=0.00206^{\circ}$.

## Manual for measuring the parallax of asteroids

c. Simple trigonometric considerations: Sine or tangent, isosceles triangle


If we assume in good approximation that the triangle $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~A}$ (telescope_1, telescope_2, asteroid) i is isosceles and the baseline a between $\mathrm{T}_{1}$ (McDonald) and $\mathrm{T}_{2}$ (Cerro Tololo) is 7180 km , we obtain using the tangent or sine function:

For the height $h$ of the triangle

$$
h=0,5^{*} a / \tan (\alpha / 2)=199512503 \mathrm{~km}=1,33 \mathrm{AU}
$$

or for the legs

$$
s=0,5^{*} a / \sin (\alpha / 2)=199512503 \mathrm{~km}=1,33 \mathrm{AU} .
$$

The MPC gives 1.396AU for the distance s on that day. That is, the estimate agrees with a deviation of 0.066AU (4.7\%).

## Notes:

* You should not do without an error estimate: How reliable is the obtained result? In each direction one can possibly assume an inaccuracy of $+/-2$ pixels. It follows that the distance in the image is between 10.4pix <s < 15.7pix, which means 1.11AU<s <1.66AU: So $s=1.39+/-0.28 A U(+/-19.9 \%)$ is a very rough but correct estimate!
* The assumption "isosceles triangle" should be discussed.

Under which circumstances is the triangle $T_{1} T_{2} A$ very far from an isosceles triangle? Can such situations really occur here?
In order to answer this heuristically, students can produce scaled sketches (A4 sheet: Earth diameter $d=1.3 \mathrm{~cm}$; distance of the asteroid $s=8$ to 20 cm )

* The distance of the telescopes can of course also be calculated in grade 9. This contribution to the mathematical understanding of geography (longitude and latitude) can be useful as a cross-curricular aspect (see appendix).


## Manual for measuring the parallax of asteroids

## d. Propaedeutic science work (college level)

exact measurement with or without error estimation,
stochastics: linear regression and standard deviation, $\sigma$-environments
vector algebra: cartesian coordinates $\Leftrightarrow$ spherical coordinates, distance between two points in space (Pythagorean theorem 3D); sine and/or cosine theorem, scalar product
astronomy: general understanding of Universal Time and Sidereal Time Movement of the Earth around the Sun!
Asteroid threat and defence

## [in progress]

## Manual for measuring the parallax of asteroids

## 4. Suitable candidates

We have gained good experience with bright asteroids located at a distance of up to 2 AU (astronomical units = distance Earth-Sun). At greater distances, the angle of the parallax becomes so small that small measurement errors produce large deviations. At distances below 0.01 AU , it becomes increasingly difficult to find two LCO sites from which to observe the object simultaneously. We have measured asteroids with a distance of 0.01 to 3.71 AU (See Appendix).

Suitable candidates can easily be found on the Near Earth Objects - Dynamic Site (NEODyS-2), sponsored by esa: https://newton.spacedys.com/neodys/index.php?pc=3.2 .
We recommend using the unique number of the asteroids!
Enter
„V magnitude mag" Max = 16,
„Distance from Earh au" Max = 2,
„Motion deg/day" Max= 16
and click the [search]-Button.
On 25.11.2021, five candidates were proposed (screenshot on the right):

| NEA | V magnitude | Distance from earth | Motion |
| :---: | :---: | :---: | :---: |
| (4660) Nereus | 13.69 | 0.062 | 1.572 |
| (163899) 2003SD220 | 14.6 | 0.074 | 1.235 |
| $(159857) 2004 \mathrm{L1}$ | 14.64 | 0.253 | 1.286 |
| 2010 LF64 | -9.99 | 0.855 | 0.458 |
| 2010 LB67 | 2.62 | 1.246 | 0.813 |



Fig. 5: Search for candidates with the help of NEODyS-2

Numbers or names can easily be copy-
pasted into the Submit Observation form of LCO under "Target":
https://observe.Ico.global/create .
There you have to select
„Type" = „Non-Siderial" and
„Scheme" = „MPC Minor Planet"
(see below).
Asteroids that are not numbered usually have an orbit that cannot yet be clearly determined, so they may be difficult to find for beginners. Orbital parameters or celestial coordinates can, of course, also be entered by hand if you happen to have the appropriate knowledge.
If necessary, move "End" generously into the future and then adjust it together with "Start" as precisely as possible to the
 intended simultaneous observation time.

Fig. 5 shows the visibility of NEA (4660) Nereus on 25 November 2021 for the 0.4 m telescopes. Airmasses are plotted on the vertical axis in $1 / \sin (\alpha)$, where $\alpha$ is the height of the object above the horizon. Here the value 1.5 corresponds to an altitude of $\alpha=41,8^{\circ}$ above the horizon and 1.3 of $\alpha$

## Manual for measuring the parallax of asteroids

$=50,3^{\circ}$. You can see that Nereus can be observed around 08:00 UT from McDonald/Texas (brown) as well as from Haleakala/Hawaii (blue). Between 8:00 and 8:08 UT Nereus is more than $50^{\circ}$ above the horizon, thus easily observable.

You may also have to consider the distance between the target and the moon, which should not be less than $30^{\circ}$. Backlight shots are always problematic!

## 5. LCO observation requests

We decide to observe from McDonald/Texas (brown) and Haleakala/Hawaii (blue) at the same time. Between 8:00 and 8:08 UT Nereus is more than $50^{\circ}$ above the horizon in McDonald as well as on Haleakala, thus easily observable. We set "Start" and "End" accordingly In the input mask of LCO ( https://observe.Ico.global/create ), only the following has to be entered under "Target":

- Name: Nereus oder 4660


Fig. 4: Description of the target in the LCO job form
ıviearniunuary 1/U./1110

This job is expected to last 6:36 minutes, including alignment of the telescopes, and it has to be entered at least three times into the LCO Observation Portal to avoid simultaneous exposures from the two adjacent 0.4 m mirrors at Haleakala or McDonald. A specific observing site cannot be chosen in the LCO system.

In addition, the window must be chosen very narrowly, otherwise the images will most likely not be taken simultaneously by different telescopes, but instead one after the other by a single telescope. (This makes sense considering the automatic process optimising the schedule, as the latter saves the time for aligning the telescopes.)

## Remarks:

I. The PanSTARRS-w filter is a special white light filter. It roughly corresponds to visible light. Advanced observers can of course also use other filters.
II. Remember that you are dealing with moving objects! The exposure time therefore must not be too long, or otherwise the object will be imaged as a dash. On the other hand, the exposure time depends on the brightness of the asteroids and the weather conditions.

## Manual for measuring the parallax of asteroids

For orientation, here is a table of the exposure time as a function of the apparent velocity of the asteroid for the 0.4 m LCO telescopes:

| max. velocity in \% $/ \mathbf{d}$ | max. velocity in '/h bzw. "/min | max. exposure time in s |
| :---: | :---: | :---: |
| 16 | 40 | 2 |
| 11 | 27 | 3 |
| 6,4 | 16 | 5 |
| 3,2 | 8,00 | 10 |
| 1,6 | 4,00 | 20 |
| 1,07 | 2,67 | 30 |
| 0,80 | 2,00 | 40 |
| 0,64 | 1,60 | 50 |
| 0,53 | 1,33 | 60 |

According to Fig. 5, Nereus has an apparent speed (motion) of just under $1.6^{\circ} / \mathrm{d}=4.00 \mathrm{~mm}$. Consequently, the exposure time should not exceed 20 s .

On the other hand, Nereus has an apparent brightness of just under 14mag. Therefore, the exposure time should be greater than 10 s with good seeing.

If the target is too fast or too faint, advanced observers can stack several images.
III. If a number has been assigned to the asteroid, we recommend using it in the LCO input mask. Only the number is unique. Temporary names are either not recognised at all or may be incorrectly assigned to different objects.

## Manual for measuring the parallax of asteroids

## 6. Image processing and evaluation with AstrolmageJ (before college level)

As already mentioned above, AstrolmageJ is free of charge and runs with all common operating systems. Good introductions and tips can be found, for example, on the Internet or in the manual (see appendix).

The aim of the following is to outline the safest and quickest way from the obtained images to a result. For this purpose, images of asteroid (12) Victoria from 22.06.2021, which can be downloaded from the LCO archive, were used as an easy to evaluate example. Optimisations can be made as desired by the reader. Nevertheless, you should pay close attention to the processing steps and the settings, as the programme sometimes reacts somewhat sensitively to small operating errors or incorrect settings.

## Possible evaluation steps:

a. Load image sequences

Download the image sequences of the two telescopes from the LCO archive and unpack them into two well-labelled folders.
Images of asteroid (12) Victoria from 22.06.2021:
https://observe.Ico.global/requests/2556448 (Cerro Tololo/Chile)
https://observe.Ico.global/requests/2556450 (McDonald/Texas)
Victoria is the brightly shining object in the centre.
b. Launch AstrolmageJ

After starting AstrolmageJ, the following sparse command window appears:


Aperture Photometry Tool
c. Settings

Set some basic settings with a right click on the yellow marked icon above. The window "Aperture Photometry Settings" opens:

## Manual for measuring the parallax of asteroids



Make sure that the above settings are set. Confirm with [OK].

## d. Load image files

Upload one image file each (fits.fz files) of asteroid (12) Victoria taken on 22.06.2021 from McDonald/Texas and from Cerro Tololo/Chile. The images should be as simultaneous as possible:
Menu in the command window: File $\rightarrow$ Open
The files "elp0m411-kb92-20210621-0094-e91.fits.fz" (McDonald/Texas) (McDonald/Texas) und „Isc0m412-kb26-20210621-0191-e91.fits.fz" (Cerro Tololo/Chile) were loaded.

e. Brightness and contrast

## Manual for measuring the parallax of asteroids

In the new windows, you can adjust the brightness and contrast with the help of the yellow marked button "auto brightness and contrast", top right. Alternatively, you can use the yellow marked sliders at the bottom.
Asteroid (12) Victoria is the brightly shining object in the centre (red arrow).
f. Selecting reference stars

In order to make positions comparable, we need to align the images:


With a left click on the yellow marked
© symbol at the top of the command window you can mark prominent fixed stars in both image files:

- Zoom:
mouse wheel
- move: left mouse button and mouse movement
- select: Linksklick auf Objekt
- whole picture in window: symbol (green arrow)

Make sure that the same fixed stars have been marked in both images!
g. Alignment of the images

Menu in the command window: Plugin $\rightarrow$ Astronomy $\rightarrow$ Align Image

## Manual for measuring the parallax of asteroids



The "Align Image" window opens:


Make sure that "Shift+Rotation+Scale" is selected under Transformation.

With [OK] the image "elp0m411-kb92-20210621-0094-e91.fits" is adapted to the image "IscOm412-kb26-20210621-0191e91.fits" by means of the marked fixed stars and opened in a new image window.

Close the old image window "elp0m411-kb92-20210621-0094-e91.fits".
h. Create image stack

Using the command
Menu im Kommandofenster: Image $\boldsymbol{\rightarrow}$ Stacks $\rightarrow$ Images to Stack
both images are combined into one stack.

Now the "Daumensprung" of asteroid (12) Victoria should become visible.
With the yellow marked slider you can switch between both images. The fixed stars remain "fixed" and the nearby asteroid seems to jump back and forth, depending from which "eye", i.e. telescope, you are looking:

## Manual for measuring the parallax of asteroids


i. Parallax image


Selection of Stack-Fenster:
Process $\rightarrow$ Combine stack slice into single image...
opens the "ZProjection" window:
Start slice: 1
Stop slice: 2
Projection type: Average Intensity Confirm with [OK].

## Manual for measuring the parallax of asteroids

j. Evaluation of the parallax image

In the newly created image combination, the distance between the centres of asteroid (12) Victoria can easily be estimated by zooming in and adjusting the brightness or contrast:


X-direction: 15 pixels (+/- 1 pixel) Y- direction: 7 pixel (+/- 1 pixel) According to Pythagoras' theorem, this makes a distance of $\Delta s=\sqrt{15^{2}+7^{2}}=16.55$ pixels. In the LCO library you will find that for the 0.4 m telescopes 1 pixel corresponds to 0.571" (pixel scale: 0.571"/pix):
https:///co.global/observatory/instruments/ .
The parallax angle is therefore $\alpha=16,55$ pix * 0,571"/pix = 9,452"

$$
=0,1575^{\prime}=0,00263^{\circ} .
$$

If we assume in good approximation that the triangle $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~A}$ (telescope_1, teleskope_2, asteroid) is isosceles and the baseline a between $T_{1}$ (McDonald) und $T_{2}$ (Cerro Tololo) is 7180 km , we obtain using the tangent or sine function:

For the height of the triangle

$$
h=0,5^{*} a / \tan (\alpha / 2)=156688884 \mathrm{~km}=1,047 \mathrm{AU}
$$

or for the legs

$$
s=0,5^{*} a / \sin (\alpha / 2)=156688884 \mathrm{~km}=1,047 \mathrm{AU} .
$$

In contrast, the MPC gives 0.948AU for the distance s on that day, which means our rough estimate deviates by 0.099AU (10.4\%).
In each direction one can possibly assume an inaccuracy of $+/-1$ pixel. It follows that the distance in the image is between 15.23pix $<\Delta \mathrm{s}<17.89$ pix, which corresponds to 0.97AU $<\mathrm{s}<$ 1.14AU:

The distance $s=1.06+/-0.09 \mathrm{AU}(+/-8.1 \%)$ thus determined may be a very rough estimate, but it misses the MPC value by only a small amount! This is partly due to the fact that the selected shots are about two minutes apart.

## k. Optimisation

If one chooses the image "Isc0m412-kb26-20210621-0191-e91.fits" instead of image "Isc0m412-kb26-20210621-0194-e91.fits", the images have a temporal distance of only 7 seconds, and the result improves to $17.46 \mathrm{pix}<\Delta \mathrm{s}<20.12$ pix, which corresponds to a distance that is between 0.862AU< s < 0.993AU:
$s=0.928+/-0.066 \mathrm{AU}(+/-7.1 \%)$ is a rough estimate which includes the MPC value of 0.948 AU ! The centre of the distance interval thus determined only deviates from the real distance by (0.948-0.928):0.948 = 2.1\%, which looks impressively good.

Manual for measuring the parallax of asteroids
7. Image processing and evaluation (college level)

## [in progress]

## Manual for measuring the parallax of asteroids

## 8. Appendix

a. Table: Measured asteroids with a distance of 0.01 to 3.71 AU in 2021

|  |  |  |  |  |  | Own evaluation: |  |  | $\begin{array}{\|l} \hline \text { Real Distanz (IPL): } \\ \hline \text { Deviation } \\ \hline \end{array}$ | Requests (1. Side) | Requests (2. Side) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Date | Asteroid | Note | Side 1 | Side 2 | Result in AU | Error in AU | Error |  |  |  |  |
| 1 | 11.01.2021 | 2021 Az | (NEO) | $\begin{array}{\|l} \hline \text { C. Tololo } \\ \text { Im0 } \\ \hline \end{array}$ | $\begin{aligned} & 703 \\ & \text { Catalina Sky } \\ & \hline \end{aligned}$ | 0,052240 | 0,0005 | 0,96\% | 0,10\% | hitps://observe./co.plobal/requests/2353064 https://observe.lco.jlobal/requests/2353065 | https://wuw.minorplanetcenter.net/db search/sho w obiect?uffe= \& obiect $i d=2021+A Z$ | Extrapolation ( 12 min) : side result of neoconfirmations (A1Oubx8); 2. Side from MPC |
| 2 | 29.01.2021 | 313 | Chaldeae | $\begin{array}{\|l} \text { Sutherland } \\ 0.4 \mathrm{~m} \\ \hline \end{array}$ | $\begin{aligned} & \text { Teide } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | ${ }^{1.119}$ | ${ }^{0.066}$ | 5.90\% | 0,97\% | hitps://Obseeve .lce:lobal/requests/2370807 | hitps://obseve.lco.slobal/requests/2370805 | interpolation |
| 3 | 07.02.2021 |  | Echo | $\begin{array}{\|l} \hline \text { Hawail } \\ 0.4 \mathrm{~m} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { Siding Spring } \\ \hline 0.4 \mathrm{~m} \\ \hline \end{array}$ | 1,004 | 0,0184 | 1.83\% | 1,37\% | httos///observe.lco.flobal/requests/2382664 | httos://observe.lco.slobal/requests/ $/ 2382662$ https://observe.Ico.slobal/requests/2382663 | Interpolation/don't worry, wrong job-name: "\#PB - Apophis_A" TO "\#PB - Apophis_C" |
| 4 | 09.02.2021 | 2020 XU6 | (NEO) | Sutherland <br> 0.4 m | $\begin{aligned} & \text { Teide } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | 0,0666 | 0,0003 | 0,45\% | 0,558(to checkl) | hittos//Obseeve.lo.s.\|lobal/reauests/2385370 | httos://observe.ko.s/lobal/requests/2385372 | Deviation greater than errorl Own error or JPL error! |
| 5 | 18.02.2021 | 2020 XU6 | (NEO) | $\begin{aligned} & \text { Sutherland } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Teide } \\ 0.4 \mathrm{~m} \\ \hline \end{gathered}$ | 0,0342 | 0,0001 | 0,29\% | 0,618(to checkl) | hitesi//observe le.s.lobal/requests/2393589 | Ittps://obesere. kc.a.slobal/requests/2393590 | Deviation greater than error! Own error or JPL errorl |
| 6 | 24.01.2021 | 99942 | $\begin{aligned} & \text { Apophis } \\ & \text { (PHA) } \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { Hawali } \\ 0.4 \mathrm{am} \\ \hline \end{array}$ | $\begin{aligned} & \text { siding Spring } \\ & 2 \mathrm{mo} 0 \end{aligned}$ | 0,182 | $0^{0,002}$ | 1,10\% | 0,11\% | httos://obseeve lco.slobal/requests/2365883 | https://obeerve.ko.:/lobal/requests/2361105 | interpolation |
| ${ }^{7}$ | 07.02.2021 | 99942 | $\begin{aligned} & \text { Apophis } \\ & \text { (PHA) } \end{aligned}$ | $\begin{aligned} & \text { Hawall } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | Siding Spring <br> 0.4 m | 0,147 | 0,002 | 1.36\% | 0,03\% | httos://observe.lco.slobal/requests/2382799 httes://observe.Ico.:8lobal/requests/2382801 | hhtps $/ / / o b s e r v e . l c o . s l o b a l / r e q u e s t s ~$$/ 2382797$. | Interpolation |
| 8 | 03.03.2021 | 99942 | $\begin{aligned} & \text { Apophis } \\ & \text { (PHA) } \end{aligned}$ | Sutherland <br> 0.4 m | $\begin{aligned} & \text { Teide } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | 0,1132 | 0,0007 | 0,62\% | 0,18\% | httos://obseeve leo.lobal/reauests/2406141 | https://observe.lco. global/requests/2406139 https://observe.lco.slobal/requests/2406140 | Interpolation |
| 9 | 17.03.2021 | 99942 | $\begin{aligned} & \text { Apophis } \\ & \text { (PHA) } \end{aligned}$ | $\begin{aligned} & \text { C.Tololo } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Teide } \\ 0.4 \mathrm{~m} \\ \hline \end{gathered}$ | 0,1183 | 0,0007 | 0,59\% | 0,06\% | https://observe.lco.global/requests/2419567 httos:///observe.\|co.plobal/requests/2419568 | httos///obseeve.lcoplobal/requests/2419463 | Interpolation |
| 10 | 21.06.2021 |  | Juno | $\begin{aligned} & \text { Hawaili } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { C.Tololo } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | 2,387 | 0,119 | 4,99\% | 2.36\% | hitps://observe.lco.Rlobal/requests/2555141 https://observe.lco.global/requests/2555142 | hitos://observe.ke.global/requests/2555143 | Interpolation |
| 11 | 22.06.2021 |  | Victoria | $\begin{aligned} & \text { C.Tololo } \\ & \text { 0.4m } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Texas } \\ & 0.4 \mathrm{~mm} \\ & \hline \end{aligned}$ | 0,9567 | 0,0167 | 1.75\% | 0,92\% |  | httos://obeerve.ko.s.jlobal/requests/2556450 | Interpolation |
| 12 | 09.10.2021 |  | Pallas | $\begin{aligned} & \text { C.Tololo } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Hawaili } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | 2,114 | 0,141 | 6,67\% | 4,87\% | htteps://observe./co.global/requests/2675000 https://observe.Ico._lobal/requests/2675001 |  | Interpolation |
| 13 | 11.11.2021 | $2019 \times 5$ | (NEO) | $\begin{aligned} & \hline \text { C.Tololo } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { McDonald } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | 0,01278 | 0,00005 | 0,39\% | 0,29\% | hittos//obseevelco.jliobal/requests/2706034 | httos://observe.lco.slobal/requests/2706036 | Interpolation; with $\sigma=3$ ( $99,5 \%$ safety); with $\sigma=1,64$ ( $90 \%$ safety) $+/-0,21 \%$ |
| 14 | 20.11.2021 | 159857 | $\begin{aligned} & \text { F9857 } \\ & \text { (PHA) } \end{aligned}$ | $\begin{aligned} & \text { McDonald } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Hawalif } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | 0,2128 | 0,00206 | 0,97\% | 0.09\% | hittos///obseve .lco.slobal/reavests/2712720 | hettos://observe.lco.global/requests/2712718 https://observe.lco.slobal/requests/2712719 | Interpolation. After selecting the sharpest images. Some are shaky. |
| 15 | 23.11.2021 |  | $\begin{aligned} & \text { Nereus } \\ & \text { (PHA) } \end{aligned}$ | $\begin{aligned} & \text { McDonald } \\ & 0.4 \mathrm{~m} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Havali } \\ & 0.4 \mathrm{~m} \end{aligned}$ | 0,0762082 | 0,000233 | 0,31\% | 0,17\% | httos///obseeve.lco.flobal/requests/2714815 | hhtps:///observe.lco.global/requests/2714623 hnttos://observe./co.global/requests/2714625 | Extrapolation (50s) |

b. Linear distance between LCO telescopes (table)

| Distanz a in km | Cerro Tololo/Chile | Haleakala/Hawaii | McDonald/Texas | Siding Spring/Australien | Sutherland/SA | Teide/Teneriffa |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Cerro Tololo/Chile | 0 | 9512 | 7178 | 10310 | $\mathbf{7 8 1 4}$ | $\mathbf{8 0 3 1}$ |
| Haleakala/Hawaii | 9512 | 0 | 5154 | 7645 | 12677 | 10895 |
| McDonald/Texas | 7178 | 5154 | 0 | 10956 | 11709 | $\mathbf{7 6 7 6}$ |
| Siding Spring/Australien | 10310 | 7645 | 10956 | 0 | 9755 | 12667 |
| Sutherland/SA | 7814 | 12677 | 11709 | 9755 | 0 | $\mathbf{7 3 3 4}$ |
| Teide/Teneriffa | $\mathbf{8 0 3 1}$ | 10895 | 7676 | 12667 | $\mathbf{7 3 3 4}$ | 0 |

Combinations marked in red do not make sense!
c. Calculating the distance between two places on earth


Essentially, this is about transforming spherical coordinates (longitude $\lambda$ and latitude $\varphi$ ) into Cartesan coordinates and determining the distance of two points in 3D space:
$x=R_{E} * \sin \varphi * \cos \lambda$
$y=R_{\mathrm{E}} * \sin \varphi{ }^{*} \sin \lambda$
$\mathrm{z}=\mathrm{R}_{\mathrm{E}} * \cos \varphi$
$\Delta \mathrm{x}=\mathrm{x}_{2}-\mathrm{x}_{1}$
$\Delta y=y_{2}-y_{1}$
$\Delta z=z_{2}-z_{1}$
$\mathrm{a}=\sqrt{\Delta x^{2}+\Delta y^{2}+\Delta z^{2}}$

This provides a good opportunity to get an idea of our habitat, planet earth (life on a sphere). Parameters are:
$\lambda \quad$ Longitude of observation site
$\varphi \quad$ Latitude of observation site
R Distance of the observation point from the center of the earth

## Manual for measuring the parallax of asteroids

d. Table: Parallax $\Leftrightarrow$ Distance s in km oder au

| Parallaxe in " | Faktor k |
| :---: | :---: |
| 2 | 103132,4 |
| 3 | 68754,9 |
| 4 | 51566,2 |
| 5 | 41253,0 |
| 6 | 34377,5 |
| 7 | 29466,4 |
| 8 | 25783,1 |
| 9 | 22918,3 |
| 10 | 20626,5 |
| 12 | 17188,7 |
| 14 | 14733,2 |
| 16 | 12891,6 |
| 18 | 11459,2 |
| 20 | 10313,2 |
| 25 | 8250,6 |
| 30 | 6875,5 |
| 35 | 5893,3 |
| 40 | 5156,6 |
| 45 | 4583,7 |
| 50 | 4125,3 |
| 55 | 3750,3 |
| 60 | 3437,7 |
| 65 | 3173,3 |
| 70 | 2946,6 |
| 75 | 2750,2 |
| 80 | 2578,3 |
| 85 | 2426,6 |
| 90 | 2291,8 |
| 100 | 2062,6 |
| 120 | 1718,9 |
| 130 | 1586,7 |
| 140 | 1473,3 |
| 160 | 1289,2 |
| 200 | 1031,3 |
| 250 | 825,1 |
| 400 | 515,7 |
| 600 | 343,8 |
| 800 | 257,8 |

If the distance a of the two telescopes is known in km, the distance s to the asteroid in km is obtained from the following formula:

$$
s=k^{*} a .
$$

In addition, the distance in au is given by:

$$
\mathrm{s}=\mathrm{k} * \mathrm{a} / 1.54 \mathrm{E} 8
$$

## Manual for measuring the parallax of asteroids

## e. Some help for AstrolmageJ

- AstrolmageJ: download and instructions
https://www.astro.louisville.edu/software/astroimagej/
- AstrolmageJ: Guide
https://www.astro.louisville.edu/software/astroimagej/guide/AstrolmageJ User Guide.pdf
- Youtube-Tutorials: AstrolmageJ
a) AstrolmageJ Introduction:
https://www.youtube.com/watch?v=bi4T wgNYNk
b) Obtaining a Light Curve Using AstrolmageJ:
https://www.youtube.com/watch?v=EfMPI2SaSjM
c) AstrolmageJ (AIJ): Processing ExoPlanet Transits (Start to Finish):
https://www.youtube.com/watch?v=GW--rE5O-c8
d) AstrolmageJ Photometry (LCO)
https://www.youtube.com/watch?v=joAO7NqEy4w
e) Robotic Telescope Project: Basic analysis of exoplanet transit data in AstrolmageJ
https://www.youtube.com/watch?v=uVb5CE syd0
f) Robotic Telescope Project: Extended analysis of exoplanet transit data in AstrolmageJ https://www.youtube.com/watch?v= UR78qRGscc

